

Lumi Cloud API

Revision 1.2
4/8/2023

Overview

Lumi Cloud provides several control APIs

 Simple HTTPS GET protocol
 Direct loopback SOCKET API for apps on Lumi TV devices
 SSH socket for local Ethernet control
 VNC for local screen sharing connection
 ADB for local Ethernet control

Video Storm provides drivers for many control systems and/or applications. This
document is intended for integrators who wish to access the
their own drivers/applications.

Cloud API

several control APIs

Simple HTTPS GET protocol to Lumi-tv.com (Webhook API)
Direct loopback SOCKET API for apps on Lumi TV devices
SSH socket for local Ethernet control

local screen sharing connection
ADB for local Ethernet control

Video Storm provides drivers for many control systems and/or applications. This
document is intended for integrators who wish to access the our APIs directly or write

cations.

Video Storm provides drivers for many control systems and/or applications. This
directly or write

Webhook API

Setup:
Users must have an active LumiCloud PRO account in order to use the API.

1. Go to lumi-tv.com, setup an account, and register your LumiTV devices
2. Click on Setup-Devices in your lumi-tv.com account. Verify this page shows all

your devices. NAME each device with a unique name.
3. Click the “Create Browser Device” button to generate a type = Browser device.

The “Token” field is the security token you will use for 3rd party control of your
devices.

Control:
Webhook API allows one way control of your connected Lumi TV devices.

Protocol:
The control protocol is a single HTTPS GET transfer (you MUST use HTTPS, not
HTTP!)

URL: https://lumi-tv.com/console/server/rcontrol.php?PARAMETERS

Parameters:
 cmd= Lumi protocol command string (single command per https get)
 dev= String for NAME of device to control, or 000 for all devices

token= Your Browser device TOKEN

All parameters must be properly URI encoded.

The Query protocol is a single HTTPS GET transfer (you MUST use HTTPS, not
HTTP!)

URL: https://lumi-tv.com/console/server/rcontrol.php?PARAMETERS

Parameters:
 cmd= String given the command (see below)
 dev= String for Device ID to query (only used with NetPlay Cloud)
 token= Your Browser device TOKEN

All parameters must be properly URI encoded.

Commands:

QUERY:

 Read SplashTiles devices and screens

Return data: Return data type is JSON

Format is as follows:
 {
 “devices” : [list of devices],
 “scripts”: [list of macros]
 }

NPQUERY:

 Read back last data from Lumi Cloud MQTT

Return data: Return data type is JSON

Format is as follows:
 {
 “TX”: String of return data
 “RX” : String of return data
 }

Socket API

The loopback socket API allows direct communication between APPS INSTALLED on
Lumi TV and the priviledged system application (LumiLauncher).

TCP socket
Port 9094
Will only accept connections on the loopback (local) interface

Authentication: none (local connections only)

Bidirectional communication using Lumi Protocol

SSH API

This secure API allows encrypted connection via the local network adapters (wired, wifi)

TCP socket, SSH & SFTP
Port 22

Authentication: Requires your SSH public key loaded via device provisioning

Shell and SFTP access via local network.

ADB API

This secure API allows encrypted connection via the local network adapters (wired, wifi)

TCP socket, ADB
Port 5555

Authentication: Requires your ADB public key loaded via device provisioning

Device ADB shell access for app installation, admin tasks, etc. Note this is user “shell”,
since root access is not available on Lumi TV

VNC API

This secure API allows encrypted screen sharing & remote control via the local network
adapters (wired, wifi)

TCP socket, SSH
Port 22

Authentication: Requires your SSH public key loaded via device provisioning

Screen sharing and remote control via VNC

Lumi Protocol

Lumi protocol is a simple ascii text based bidirectional UART style interface for
accessing the functionality of the priviledged system application (LumiLuancher)

All commands and responses are terminated by carriage return (/r or ascii 0x0d)

Multiple commands can be sent without waiting for responses. All commands execute
immediately and in order.

Available commands:

QSTATVER Get current Lumi TV version

QCECON Turn on attached TV via CEC

QCECSEL Set attached TV input select to Lumi TV port

QCECOFF Turn off attached TV via CEC

QSETLED int Set Lumi TV LED display

QAPP pkgname Launch App with given package name
 (com.example.app)

QLAUNCH intenturl Execute the android intent URL
 (see appendix for examples)

QDREAM Run screen saver now

SHELL shellcmd Run given shell command
 (shellcmd may contain spaces etc)
 Note shell access can be disabled in provisioning

QSTATS Instruct LumiTV to post stats history to lumi-tv.com
 (can use webhook api to retrieve)

QSCREEN Instruct LumiTV to post screen shot to lumi-tv.com
 (can use webhook api to retrieve)

QSTATSEND Instruct LumiTV to post current status to MQTT
 (can use webhook api to retrieve)

QWEBHOOK url Execute given Webhook URL

QRESTART Reboots Lumi TV NOW

QUPDATEPV Check for provisioning profile update NOW

QUPDATEFW Check for ota update NOW

QDOGSTART Start Watchdog for this interface

QDOGSTOP Stop Watchdog for this interface

QDOGKICK Kick Watchdog: If dog started must send this
 Command every 15min to avoid reboot
 (note this is additional to the normal hardware watchdog)
 (intended to extend watchdog to external apps / processes)

QPLAYLx file Play given local media (image, video)
 x = 0 (web) 1 (video) 2 (image) 3 (audio)

QPLAYUx url Show the given URL
 x as above

QPLAYD dur dir Slideshow image files in local directory
 dur = duration in seconds

QRESUME Resume running schedule
 (call this after a QPLAY command to immediately resume
schedule)

QSENDKEY int Execute the given keyevent

Defined at https://developer.android.com/reference/android/view/KeyEvent.html

QSENDTEXT text Send the keyevents corresponding to the given text

QSIRPULSE hexcode Send the given IR hex code
 (IRUSB required)
 (can include id=xxxxxxx if multiple IRUSB devices)

Android Intents (for QLAUNCH)

QLAUNCH allows launching apps as well as sending specific data to other apps. This
can also be used to configure apps which do not support managed profiles.

QLAUNCH commands use standard Android Intent URLs with the following format:

QLAUNCH android-
app://PACKAGE_NAME#Intent;component=COMPONENT_TO_LAUNCH;end

Both the PACKAGE_NAME and COMPONENT_TO_LAUNCH names are
required. You can find these by looking at the ADB log output when manually starting
any app. You can filter the log with cmp= to find these (after manually launching the app
using the gui).

Deep links:

Lumi supports several methods to link directly to programs or channels within apps. This
is known as 'Deep linking'.

1. Using the web site URL syntax
2. Using the 'intent://' URL syntax
3. Using the 'android-app://' URL syntax

Web site URL syntax (try this method first):

This method is the most straightforward. You simply find the web url syntax for your
title, video, or show. For Youtube, examples are:

 Video: QLAUNCH http://www.youtube.com/watch?v=VIDEOID
 Playlist: QLAUNCH http://www.youtube.com/playlist?list=PLAYLISTID

Remember to include the 'www' in the address!

'intent://' URL syntax:

This method is better if your device can't figure out which app to send the web url to.
You are adding the package name as well as the web url. For Youtube, examples are:

 Video: QLAUNCH
intent://www.youtube.com/watch?v=VIDEOID#Intent;package=com.google.andr
oid.youtube.tv;scheme=https;end

 Playlist: QLAUNCH
intent://www.youtube.com/playlist?list=PLAYLISTID#Intent;package=com.goog
le.android.youtube.tv;scheme=https;end

Remember to include the 'www' in the address! Also keep in mind the package name will
be different on Amazon devices.

'android-app://' URL syntax:

This method is just a different format of the 'intent' type. The following examples are for
Netflix which requires extra data (see below):

 Play Video: QLAUNCH android-
app://com.netflix.ninja/http/www.netflix.com/watch?VIDEOID#Intent;package=c
om.netflix.ninja/.MainActivity;S.source=30;end

Keep in mind the package and component names will be different on Amazon devices.

Extra Data syntax:

Some apps require sending 'extra data' in order to select content directly. Both intent
types and android-app types support this.

QLAUNCH android-
app://PACKAGE_NAME/DATA#Intent;component=COMPONENT_TO_LAUNCH;EX
TRADATA;end
QLAUNCH
intent://DATA#Intent;package=PACKAGE_NAME;component=COMPONENT_TO_L
AUNCH;EXTRADATA;end

The format of EXTRADATA is

 i.VAR_NAME=VALUE; (integers)
 S.VAR_NAME=VALUE; (Strings)

DATA is usually a web url (http://host/path)

As there is no standard covering what values can be passed to different apps, Google is
the best way to find information on what values are needed.

